(x+3)(x+3)=(2x^2+13x+19)

Simple and best practice solution for (x+3)(x+3)=(2x^2+13x+19) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)(x+3)=(2x^2+13x+19) equation:



(x+3)(x+3)=(2x^2+13x+19)
We move all terms to the left:
(x+3)(x+3)-((2x^2+13x+19))=0
We multiply parentheses ..
(+x^2+3x+3x+9)-((2x^2+13x+19))=0
We calculate terms in parentheses: -((2x^2+13x+19)), so:
(2x^2+13x+19)
We get rid of parentheses
2x^2+13x+19
Back to the equation:
-(2x^2+13x+19)
We get rid of parentheses
x^2-2x^2+3x+3x-13x+9-19=0
We add all the numbers together, and all the variables
-1x^2-7x-10=0
a = -1; b = -7; c = -10;
Δ = b2-4ac
Δ = -72-4·(-1)·(-10)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3}{2*-1}=\frac{4}{-2} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3}{2*-1}=\frac{10}{-2} =-5 $

See similar equations:

| 9+d=-1 | | 5/7(k+5)=−7 | | -23=3(x-4)+7 | | 5r−1/5=4/5 | | c+6=-12 | | a+5=25-4a | | -x+18=4(5x-5)-4 | | 10x-(9x-8)=12x+(7x-10) | | (x+3)^2=2x^2+13x+19 | | 7x-10=3x+46 | | 8-2g-2+4g=10 | | 4x-(23-x)=-47-x | | 4(-d+4)=12 | | 155=2x-5(5x-8) | | 3(x-5)=-8x | | -2+9=5(2x-3) | | 5n-7=2n-8 | | k−8=11.8k | | 3/9g=-6 | | -4(2x-4)=8x+3 | | 18x=16-8 | | 90x+900=3060 | | 27-3x=3x+24 | | 6x+4+x=-11 | | x+3=3(3x-1 | | 0=20-4y | | 9-(-x)=-15 | | 1/2(24x-66)=3x+43 | | -6x−54=6 | | 19x-8x+7=37 | | 21675=(x*0.08375)+x | | 2(3k+10=40 |

Equations solver categories